

Scalability vs. Performance

by Daniel M. Pressel

ARL-TR-2596 September 2001

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of
the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the
originator.

Approved for public release; distribution is unlimited.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-2596 September 2001

Scalability vs. Performance

Daniel M. Pressel
Computational and Information Sciences Directorate, ARL

Abstract

In the ideal world, the performance of a program running on a supercomputer
would always be proportional to the peak speed of the system being used.
Furthermore, the program would always achieve a high percentage of peak (e.g.,
50% or better). In the real world, this is frequently not the case. Therefore, it is
important to distinguish between the following five concepts: (1) performance
(run time), (2) ideal speedup, (3) hard scalability (fixed problem size speedup),
(4) soft scalability (scaled speedup), and (5) throughput (how long it takes to run
a collection of jobs).

This report addresses these concepts and explains their meanings and
differences. Hopefully, this will allow readers to evaluate the behavior of
programs and computer systems, and most importantly, to evaluate their own
expectations for running a program on a particular system or class of systems.

Examples, which demonstrate these concepts, are drawn from a variety of
projects and include both problems from multiple computational technology
areas (CTAs) and results from outside of the Department of Defense (DOD). In
some cases, there will also be theoretical arguments to help better explain the
issues.

 ii

Acknowledgments

The author would like to thank Steve Schraml and Marek Behr for permission to
use their results in this report. He would also like to thank his many colleagues
that have graciously assisted him in all aspects of the preparation of this report.
He would also like to thank the entire Common High Performance Computing
Software Support Initiative (CHSSI) CFD-6 team for their assistance in this work
as part of that team. Additional acknowledgments go to Tom Kendall,
Denice Brown, and the systems staff for all of their help. Finally, he would also
like to thank the employees of Business Plus Corp., especially Claudia Coleman
and Maria Brady, who assisted in the preparation and editing of this report.

This work was made possible through a grant of computer time by the
Department of Defense (DOD) High Performance Computing Modernization
(HPCM) Program. Additionally, some of the results mentioned in this work
came from projects that were funded as part of the Common High Performance
Computing Software Support Initiative (CHSSI) administered by the DOD
HPCM Program.

 Note: All items in bold are in the Glossary.

 iii

INTENTIONALLY LEFT BLANK.

 iv

Contents

Acknowledgments iii

List of Figures vii

List of Tables ix

1. Introduction 1

2. Performance 1

3. Ideal Speedup 4

4. Hard Scalability 5

5. Soft Scalability 8

6. Throughput 10

7. Serial Efficiency 13

8. Conclusions 16

9. References 17

Glossary 19

Distribution List 21

Report Documentation Page 25

 v

INTENTIONALLY LEFT BLANK.

 vi

List of Figures

Figure 1. Predicted speedup for a loop with various units of
parallelism. ... 5

Figure 2. The effect of Amdahl’s Law on performance. .. 6
Figure 3. The effect of communications costs on performance. 7
Figure 4. The scalability of the SGI R12000 Origin and the SUN

HPC 10000 when running CTH... 10
Figure 5(a). The comparative performance of the parallelized RISC

optimized version for shared memory platforms of the F3D
code.. 15

Figure 5(b). The comparative performance of the parallelized RISC
optimized version for distributed memory platforms of the F3D code 15

 vii

INTENTIONALLY LEFT BLANK.

 viii

List of Tables

Table 1. Predicted speedup for a loop with 15 units of parallelism.........................4
Table 2. The scalability of the SGI R12000 Origin and the SUN

HPC 10000 when running CTH...9
Table 3. The performance of various versions of the F3D code

when run on modern scalable systems ..14

 ix

INTENTIONALLY LEFT BLANK.

 x

1. Introduction

In the ideal world, the performance of a program running on a supercomputer
would always be proportional to the peak speed of the system being used.
Furthermore, the program would always achieve a high percentage of peak (e.g.,
50% or better). In the real world, this is frequently not the case. Therefore, it is
important to study and discuss performance metrics for parallel systems and
programming. Two important uses of these metrics are (1) the evaluation of the
behavior of programs and computer systems and (2) the evaluation of
expectations for running a program on a particular system or class of systems.

The metrics that will be discussed in this report are (1) performance (run time),
(2) ideal speedup, (3) hard scalability (fixed problem size speedup), (4) soft
scalability (scaled speedup), and (5) throughput (how long it takes to run a
collection of jobs).

The discussion of these metrics will include a mixture of theoretical analysis and
experimental results. The experimental results will come from a variety of
disciplines but, in all cases, will involve real codes (e.g., no benchmarks) with
representative data sets. While the experimental results were obtained using real
systems, the use of those systems does not constitute an endorsement of the
product. Additionally, just because system A outperforms system B for one data
set or program does not imply that that will be the case for all data sets or
programs.

2. Performance

Most users are primarily interested in the following issues:

(1) the ability of the computer system to run their job;

(2) the correctness of the results;

(3) how fast does the job run once it starts running;

(4) how long will it take a series of jobs to complete; and

(5) when will the system start running their jobs.

The first, second, and fifth of these issues are beyond the scope of this report.
The fourth topic will be discussed in section 6. Performance can be quantified as:

.
Efficiency
Parallel

Efficiency
Serial

Efficiency
orithmiclgA

ePerformanc
Peak lTheoretica ePerformanc ×××=

 1

For many jobs, one can specify either a minimum acceptable level of performance
and/or a desirable range for the performance. This need not preclude the
achievement of even higher levels of performance. However, there may be
resource allocation issues that favor sticking to the desirable range for the
performance. What is important to note is that the program with the highest
level of parallel efficiency may not be the program with the highest level of
algorithmic efficiency* and vice versa. Furthermore, the history of parallel
computing contains numerous examples of systems that would scale well, but on
which it was notoriously difficult to obtain high levels of serial performance (e.g.,
the Thinking Machines CM2/CM200, many systems containing the Intel i860
microprocessor, and the Cray T3D [Bailey 1993; Simon and Dagum 1991; Simon
et al. 1994; Bailey and Simon 1992; Oberlin 1999]). Therefore, it can be seen that
all of the terms in this equation actively contribute to the delivered level of
performance. This is a very different point of view from those who stress issues
such as the following:

(1) The peak level of performance.

(2) The performance of a machine when running the unlimited size LINPACK
benchmark (a benchmark that tends to have a high correlation with the
peak speed of a system).

(3) That so long as a system is highly scalable with an efficient interconnect,
one can “always” overcome a performance problem by using more
processors (Simon et al. 1994).

Instead, what may be needed are combinations of programs and systems to run
them on that provide an acceptable range of performance (preferably measured
in run time, as opposed to MFLOPS) for a reasonable range of problem sizes
and/or complexities. For example, if two programs can achieve similar results
with similar levels of performance, for an acceptable range of problem sizes, then
it is unimportant if the combination of program A and machine A has limited
scalability past 64 processors and no scalability past 128 processors, while the
combination of program B and machine B has good scalability to hundreds of
processors. One might ask, how can this be? Some of the rationale behind this
statement are as follows:

(1) If the combination of program B and machine B needs the scalability just to
match the performance of program A and machine A then, at best, program
B and machine B are equal to program A and machine A.

* Algorithmic efficiency is a concept that can be difficult to measure in an absolute sense.

However, it can generally be quantified in a relative sense (e.g., the relative number of floating
point operations two programs require to obtain a solution to a particular problem at a specified
level of precision), and, in most cases, that is sufficient.

 2

(2) If one needs high levels of scalability to match another system’s
performance, then the cost effectiveness of the system must be considered.

(3) Scalability well beyond the planned size of a system is of primarily
theoretical value.

(4) On most systems, most users have limited allocations and/or limited job
priorities. Therefore, the user may find it difficult to use more than a
certain number of processors at one time. Again, this results in unlimited
levels of scalability being primarily of theoretical value.

Of course, it is also possible that the combination of program B and machine B is
not only more scalable, but also performs at least as well as program A and
machine A on a per processor basis. In such a case, there may be a strong reason
for favoring the combination of program B and machine B.

The following excerpts (Mascagni 1990) should help to demonstrate this point:

“One of the most intriguing aspects of linear elliptic boundary
value problems (BVPs) is their relationship to probability.

.

.

.

It is obvious that this algorithm faithfully implements the
collection of statistics implied in equation 2 in an
“embarrassingly” parallel fashion. . . . It also makes little
difference if we implement this algorithm on a shared or
distributed memory machine (or a loosely coupled group of
workstations) since there is no interprocessor communication
until the statistics are centrally collected.

.

.

.

It is well known that these Monte Carlo methods are much
inferior to many deterministic methods for these types of
problems.”

Additional material on this topic can be found in Singh et al. (1998) and Wang
and Tafti (1997).

 3

3. Ideal Speedup

Frequently, it is necessary to predict the performance of a program for a fixed
problem size when larger numbers of processors are used. In other cases, one
needs to consider the relative merits of running two programs at once (each
using half of the processors) vs. running the same programs sequentially (each
using all of the processors). Questions such as these lead to the concept of ideal
speedup.

The most commonly used definition for ideal speedup is that the speed at which
the program runs on a particular machine is proportional to the number of
processors being used. Returning to the concepts discussed in section 2, this is
equivalent to saying that the parallel efficiency should be 100%.

Clearly from the standpoint of efficiency, unless the parallel efficiency is 100%, it
is more efficient to run two programs at once, rather than running them
sequentially. However, there are frequently other concerns (e.g., memory
requirements and/or minimum performance requirements) that may outweigh
this consideration.

There are many reasons why a program will not show linear speedup. Many of
these have to do with limitations in the parallelization effort and/or
inefficiencies in the hardware. As such, they are considered to be the cause for
deviations from ideality. These topics will be readdressed later in this report.
However, one can argue that for some algorithms, and in particular, for some
approaches to parallelizing those algorithms, that linear speedup is not the ideal
speedup. Probably the most common example of this occurs when parallelizing
a loop with M iterations when using N processors. If M is within about an order
of magnitude of N, then the ideal speedup takes on the appearance of a staircase.
This can best be seen in Table 1 and Figure 1.

Table 1. Predicted speedup for a loop with 15 units of parallelism.

Number of
Processors

Maximum Units of Parallelism
Assigned to a Single Processor

Predicted
Speedup

1 15 1.000
2 8 1.875
3 5 3.000
4 4 3.750

5–7 3 5.000
8–14 2 7.500
15 1 15.000

 4

10 20 30 40 50

10

20

30

40

50

5 Units of Parallelism
15 Units of Parallelism
25 Units of Parallelism
35 Units of Parallelism
45 Units of Parallelism

Number of Processors

Th
eo
re
tic
al
Sp
ee
du
p

Figure 1. Predicted speedup for a loop with various units of parallelism.

This behavior is commonly seen with programs parallelized using OpenMP and
its predecessors (it can also show up in other cases with a limited amount of
parallelism [Bettge et al. 1999]). Providing that a program is able to meet its
performance criteria, it is probably not appropriate to strongly penalize a
program for this type of behavior. Instead, one should take this type of behavior
into account when establishing the definition of ideal speedup.

This deviation from linear speedup is not an example of poor load balancing.
Poor load balancing occurs when one or more processors receive significantly
more work than the remaining processors. In this case, the distribution of work
is limited by the limitations of integer arithmetic and, therefore, should be
considered to be perfectly balanced (even though some processors might receive
one more unit or work than another processor). Similarly, this is not an example
of Amdahl’s law, since the loop is fully parallelized.

4. Hard Scalability

When discussing the actual scalability of a program, one really needs to talk
about the combination of the program, the hardware, and the data set. The
earliest metric for scalability is referred to as either hard scalability or fixed size
scalability. This assumes that one has a fixed problem to solve and one wants to
know how many processors are required to deliver an acceptable level of

 5

performance. There can be a number of reasons why the program will fail to
deliver ideal speedup. Furthermore, on real distributed memory architectures
running real codes and data sets, one frequently finds that large data sets cannot
be run using a single processor of an MPP (most commonly due to insufficient
memory). Smaller data sets that can be run on a single processor of an MPP may
have a poor communication-to-computation ratio and, therefore, will show a low
level of scalability. As a result of these problems, another metric was proposed,
soft scalability, and it will be discussed in section 5.

Many of today’s MPPs have powerful enough processors and enough memory
per processor to enable many problems to be run on just one or two processors, if
only for the purpose of running a scalability study. Therefore, let us briefly
consider the three most commonly mentioned reasons for deviations from ideal
speedup.

(1) Amdahl’s Law: run time = serial run time + parallel run time. As the
number of processors approach infinity, the parallel run time will
asymptotically approach zero, and the run time will asymptotically
approach the serial run time. Therefore, so long as one cannot eliminate the
serial run time, there is an upper bound on speed at which a particular
machine can run a particular job (see Figure 2).

0 100 200 3000

50

100

150

200

250

300

Number of Processors

Sp
ee
du
p

No time spent on serial code
10% of CPU time spent on serial code
1% of CPU time spent on serial code
0.1 % of CPU time spent on
serial code

Figure 2. The effect of Amdahl’s Law on performance.

 6

(2) Communication costs are nearly always a function of the number of
processors being used. In some cases, the function is a weak one (e.g.,
O(log(N)), while in other cases, it can be much stronger (e.g., O(N)). This
now gives us the following: parallel run time = parallel computation time
+ communication time. Therefore, even if the serial run time is zero, the
run time will not asymptotically approach zero. Instead, a plot of the run
time as a function of the number of processors used is expected to be U
shaped. In other words, there is a small range of processors for which the
level of performance will reach a maximum. Past that point, the
performance will actually drop off as the number of processors is increased
(Almasi and Gottlieb 1994). It is important to note that these costs are
primarily a function of three things (the hardware, the number of messages
[along with their distribution], and the size of the messages [see Figure 3]).

0 100 200 300 400 500 6000

100

200

300

400

500

600

700

800

900

1000

1100

0

10

20

30

40

50

60

70

80

90

100

Run time for ideal linear speedup
Ideal linear speedup
Theoretical communications costs [O(LOG(N))]
Run time including communications costs

Speedup when communications costs are included

Number of processors

R
un
tim
e

Sp
ee
du
p

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

800

900

1000

1100

0

10

20

30

40

50

60

70

80

90

100

Number of processors

R
un
tim
e

Sp
ee
du
p

Run time for Amdahl's Law (assuming 99% parallel code)
Speedup for Amdahl's Law
Run time for Amdahl's Law + communications costs
Speedup for Amdahl's Law + communications costs

Figure 3. The effect of communications costs on performance.

 7

(3) The load balance: For example, if each part of an airplane’s outer surface is
assigned to a different processor, then one processor would get most, if not
all, of the fuselage. Each wing would be assigned to another processor,
and, finally, the tail assembly would be assigned to a small number of
processors. Assuming that all of the components are grided at the same
resolution, then the processor with the fuselage might be performing
upwards of 50% of the work. This would limit the potential for parallel
speedup to no more than a factor of 2. Clearly, a better approach is needed.
Three commonly used approaches are:

(a) Domain decomposition, which breaks up the larger zones into more
manageable pieces.

(b) Processing the zones one at a time and parallelizing the processing of
the individual zones using loop-level parallelism or other techniques.

(c) Domain agglomeration, which would assign multiple zones to a single
processor. This would be of little value in this case, but might be of
value when all of the zones are small, but the range of zone sizes
cannot be ignored. Recently, James Taft (a contractor for the NASA
Ames Research Laboratory) has been giving talks on some work that
he has been doing in this area.

5. Soft Scalability

Soft scalability is also known as scaled speedup and was first proposed by J. L.
Gustafson (1988). It proposes that so long as the run time of a job remains
roughly constant when the job size and the number of processors increase at
proportionally the same rate, then the job should be considered to be scalable.
The advantage of this argument is that it allows one to get around the limitations
imposed by Amdahl’s Law. In fact, for many programs, it can eliminate both
that limitation and problems with a poor ratio between communication and
computation.

An excellent example of this approach at work was provided by Steve Schraml of
the U.S. Army Research Laboratory (ARL), Aberdeen Proving Ground, MD.
When running CTH on the SGI R12K Origin 2000 and the SUN HPC 10000s
located at the ARL-Major Shared Resource Center (MSRC), he measured the
results in Table 2 and Figure 4.

Two important objections to this approach are as follows:

(1) It doesn’t address the problem of what to do if the speed at which problem
A runs is unacceptable. Presumably, if one runs a problem N times larger
using N times as many processors, the speed will still be unacceptable. The
obvious answer is to use more processors for the current problem size.

 8

Table 2. The scalability of the SGI R12000 Origin and the SUN HPC 10000 when running
CTH.

Grind Time in microseconds/zone/cycle System No. of Processors Measured
1 Processor Dataa 8 Processor Dataa

SGI Origin 1 36.979 36.979 N/A
 2 20.479 18.490 N/A
 4 10.355 9.2448 N/A
 8 7.2749 4.6224 7.2749
 16 4.0035 2.3112 3.6375
 32 2.0599 1.1556 1.8187
 48 1.4815 0.77040 1.2125
 64 1.2456 0.57780 0.90936
 96 0.73997 0.38520 0.60624

SUN HPC 10000 1 47.558 47.558 N/A
 2 25.622 23.779 N/A
 4 11.875 11.890 N/A
 8 7.0330 5.9448 7.0330
 16 3.7468 2.9724 3.5165
 32 1.8792 1.4862 1.7583
 48 1.2385 0.99079 1.1722
 60 1.1170 0.79263 0.93773
 63 1.1075 0.75489 0.89308
 64 1.1332 0.74309 0.87913

a Predictions based on scaling.

 However, that raises the question of hard scalability. Potentially, this could
result in some problems being run on so many processors that while their
overall performance is good, their poor per processor performance might
be deemed to be unacceptable. This can be an especially bad problem if it
causes one to run out of processors.

(2) This metric cannot be applied to any problem where the parallelism is not
directly proportional to the problem size. In particular, when parallelizing
the implicit computational fluid dynamics code F3D while using loop-level
parallelism, it was discovered that for two important loops, there were
dependencies in two out of three directions. Therefore, if each of the
dimensions of each zone is doubled, the amount of work increases by a
factor of 8, while the parallelism increases by only a factor of 2.

These can be important objections, since using the wrong metric or an
inappropriate metric for the case at hand can lead to the wrong conclusions. In
some cases, this might result in one choosing a suboptimal solution, while, in
other cases, it might result in a project being abandoned entirely.

 9

100 101 10210-1

100

101

102

Actual data

Predicted scaling based on single processor performance

Predicted scaling based on eight processor performance

Number of processors

G
rin
d
tim
e
in
m
ic
ro
se
co
nd
s/
zo
ne
/c
yc
le

Data curtesy of Steve Schraml (ARL)

Figure 4. The scalability of the SGI R12000 Origin and the SUN HPC 10000 when
running CTH.

6. Throughput

While this metric is important to all users, it can be especially important to those
users running parametric studies. These studies can be grouped into three
categories:

(1) There are a large number of jobs to run, with no one job requiring a large
number of resources. Furthermore, there are no dependencies between the
runs, so one can, in theory, run all of them at the same time.

(2) There are a significant number of jobs to run, but they require a
moderate-to-large amount of at least one resource (e.g., memory).
However, there are few, if any, dependencies between the runs, so one may
be able to run a limited number of these jobs at one time.

(3) There are a significant number of jobs to run, with no one job requiring a
large number of resources. Unfortunately, there are dependencies between
the runs, so one is again limited as to how many jobs can be run at one
time.

 10

The importance of these categories is that for a throughput optimized site, the
first case might be able to achieve an acceptable level of performance while using
a limited number of processors per job. In the other two cases, one will almost
always want to use a larger number of processors per job. Therefore, in those
cases, the scalability of the job takes on added importance.

An important aspect in terms of throughput is the cost of the hardware in
question. While there can be significant variability in the cost of the hardware
from one vendor to the next, and from one generation of system to the next
within a single vendor’s product line, this discussion will ignore those issues.
Instead, it will concentrate on the cost of the hardware times the time it is in use
for the following three hypothetical system configurations:

(1) Distributed memory MPP with a medium amount of memory (L MBytes),
where the cost of the system is 2 * M, where M = the cost of the
memory = the cost of everything else.

(2) Distributed memory MPP with a large amount of memory (2 * L MBytes),
where the cost of the system is 3 * M, where 2 * M = the cost of the memory,
and M = the cost of everything else.

(3) Shared memory MPP with a medium amount of memory per processors
(L MBytes), where the cost of the system is 2 * M, where M = the cost of the
memory = the cost of everything else.

We will also consider the case of six sets of runs. All of these runs will be
assumed to have been parallelized using MPI and are assumed to exhibit linear
speedup for small numbers of processors. Three of the runs are representative of
many CFD applications in that when their work is spread across N processors,
the per processor amount of memory required is also decreased by a factor of N.
The other three sets of runs are representative of many chemistry applications in
that virtually all of the data must be replicated for each processor. Therefore, for
this second group of runs, using additional processors will not allow one to run a
job that is too big to run on a single processor. The memory requirements for the
three jobs from each of the two sets of jobs will be assumed to be L/4, L, and 4L.

Inspection will show that the largest job relying on replication can only be run on
the shared memory MPP. Even in this case, it will be “stealing” memory from
other jobs’ processors. Depending on the workload, this might be acceptable or
might require some of the processors to be left unused. Providing that this does
not happen often and/or that these jobs represent a small percentage of the total
workload, this should be an acceptable solution to the problem of running this
type of job. However, if these jobs are more common, then it may be desirable to
configure a system specifically to meet the needs of such a job.

Inspection also shows that for the application which does not require the
replication of data structures, that for certain problem sizes, one may need to use

 11

more than just one processor on a distributed memory system before the job can
be run (e.g., the job requiring 4L MBytes of memory requires a minimum of
four processors to run on the first of our hypothetical systems). However, most
combinations of system type and job size for this class of jobs can be made to
work. If one considers the cost of running these jobs, one might assume that the
cost would be as follows:

cost for N processors + cost for memory used (e.g., L MBytes).

However, for the distributed memory systems, where the memory is tightly tied
to the processors, the actual cost would be as follows:

cost for N processors + cost for the memory associated with

N processors (e.g., N * L MBytes).

From this, one can conclude that regardless of which class of job is run or which
size dataset is being run, so long as the job is runable, the cost of running the job
on System 1 will always be 2 * M * T1, where T1 is the time to run the job on a
single processor (assuming the processor is configured with enough memory to
run the job). For System 2, the cost will be 3 * M * T1. Similarly, for System 3, the
cost will be 2 * M * T1.

The preceding analysis assumed that a job should only be charged for the
resources it is tying up. However, one can also argue that a job should be
charged for the resources that it is causing to be tied up. In other words, in order
to maintain the ability to run a large memory job on a distributed memory
system, the large memory job is causing the system to be configured with extra
memory. This has the effect of decreasing the total number of processors that
can be purchased and therefore adversely effecting the throughput of jobs that
do not require a system with such a generous configuration. There are three
main solutions to this problem; which one should be used can be highly site
specific as follows:

(1) Arbitrarily limit the amount of memory per processor on a distributed
memory MPP, thereby forcing the jobs to live within that limit. In the past,
many customers of MPPs had few, if any, choices as to the amount of
memory per processor, thereby forcing them into this mode of operation.

(2) Purchase either multiple systems and/or systems composed of nodes with
multiple configurations. In this case, one can attempt to more closely
match the requirements of the jobs to the available hardware. In general,
this solution can be very cost effective and therefore should result in a
superior level of throughput.

(3) Purchase at least some shared memory systems to run the jobs requiring
the greatest amount of memory per processor. The inherent flexibility of
these systems may justify the additional expenses associated with this class

 12

of hardware (something that has been ignored in this discussion up until
now). This does not mean that this class of system should be the only class
purchased. Nor does it mean that it should represent the majority of the
dollars spent. However, it can be an extremely efficient method for
supporting a modest number of memory-hungry jobs (frequently referred
to as memory hogs). Depending on the job mix and the mix of system
configurations that were purchased, one can sometimes argue that these
systems will pay for themselves by decreasing the amount of memory that
the MPP(s) need to be equipped with.

7. Serial Efficiency

Most of this report has dealt with the scalability. Now let us return to the
question of serial efficiency. Even if one is running similar programs based on
the same algorithm using similar parallelization strategies, differences in serial
efficiency can significantly affect the performance of the programs. In particular,
we will consider the performance of three versions of the F3D program that was
previously mentioned. Marek Behr, formerly of the U.S. Army High
Performance Computing Research Center, produced two versions of the code
designed to run on distributed memory platforms. One version used SHMEM
calls and could be run on either the SGI Origin 2000 or the Cray T3E. The other
version of this code used the more portable, but arguably less efficient MPI calls.
The third version of the code was written by the author and was based on
compiler directives for loop-level parallelism. As such, it could only be run on a
shared memory platform and is highly dependent on the design characteristics of
the platform being used. Table 3 and Figure 5 contain results from running these
codes on several different platforms for a 1-million grid point test case.

From the results in Table 3 and Figure 5, one can see that there are a number of
factors which can affect the performance of a program. The peak speed of the
processor and the number of processors used are only two of those factors.

 13

Table 3. The performance of various versions of the F3D code when run on modern
scalable systems.a

Speed

System
Peak Processor

Speed
(MFLOPS)

No. of
Processors Used

Version

(time steps/hr) MFLOPS
SGI R10K O2K 390 8 Compiler Directives 793 1.04E3
SGI R12K O2K 600 8 SHMEM 382 4.99E2
SGI R10K O2K 390 32 Compiler Directives 2138 2.79E3
SGI R12K O2K 600

600
32 SHMEM

Compiler Directives
989

2877
1.29E3
3.76E3

SGI R10K O2K 390 48 Compiler Directives 2725 3.56E3
SGI R12K O2K 600

600
48 SHMEM

Compiler Directives
1083
3545

1.42E3
4.63E3

SGI R10K O2K 390 64 Compiler Directives 2601 3.40E3
SGI R12K O2K 600

600
64 SHMEM

Compiler Directives
1050
3694

1.37E3
4.83E3

SGI R10K O2K 390 88 Compiler Directives 3619 4.73E3
SGI R12K O2K 600

600
88 SHMEM

Compiler Directives
1320
5087

1.73E3
6.65E3

Cray T3E-1200 1200 8 SHMEM 349 4.56E2
 32 1062 1.39E3
 48 1431 1.87E3
 64 1705 2.23E3
 88 2443 3.19E3
 128 2948 3.85E3
IBM SP 160 (MHz) 640 8 MPI 199 2.60E2
 32 342 4.47E2
 48 420 5.49E2
 64 423 5.52E2
 88 396 5.18E2
Sun HPC 10000 800 8 Compiler Directives 999 1.31E3
 32 2619 3.64E3
 48 3093 4.04E3
 56 3391 4.43E3
 64 2819 3.68E3
HP V-Class 1760 8 Compiler Directives 1632 2.13E3
 14 2392 3.13E3

a For additional details, see Behr et al. (2000).

 14

*
*

*
*
*
*
*
*
*
*
* *
* *

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

1000

2000

3000

4000

5000

6000

7000

8000

*

Sp
ee
d
in
tim
e
st
ep
s
pe
rh
ou
r

Number of Processors

SGI R12K Origin 2000 (128 p, 300-MHz system)

HP V2500 (16p, 440-MHz system) (Guide)

SUN HPC 10000 (64 p, 400-MHz system)

Figure 5(a). The comparative performance of the parallelized RISC optimized version for
shared memory platforms of the F3D code.*

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

1000

2000

3000

4000

5000

6000

7000

8000

Sp
ee
d
in
tim
e
st
ep
s
pe
rh
ou
r

Number of Processors

Cray T3E-1200 (SHMEM)
SGI Origin 2000 (128 p 300-MHz system, SHMEM)
IBM SP (160-MHz system, MPI)

These results are courtesy of Marek Behr.

Figure 5(b). The comparative performance of the parallelized RISC optimized version for
distributed memory platforms of the F3D code.*

* The speeds have been adjusted to remove startup and termination costs.

 15

8. Conclusions

This report has discussed a number of issues relating to the topics of scalability
and performance. It has been shown that for some problems, the ideal speedup
will resemble a stair step rather than a straight line. With this concept in hand,
two ways for measuring scalability were discussed, with emphasis placed on
their strengths and weaknesses. This discussion included examples using these
metrics. Hopefully, this report will help the reader in his/her work. In
particular, it points out that while scalability is good, most users are concerned
with performance and throughput.

 16

9. References

Almasi, G. S., and A. Gottlieb. Highly Parallel Computing 2nd Edition. Redwood
City, CA: Benjamin/Cummings Publishing Company, 1994.

Bailey, D. H. “RISC Microprocessors and Scientific Computing.” Proceedings
for Supercomputing 93, 1993.

Bailey, F. R., and H. D. Simon. “Future Directions in Computing and CFD.”
American Institute of Aeronautics and Astronautics, http://
www.nas.nasa.gov/NAS/TechReports/RNRreports/hsimon/RNR-92-019
RNR-92-019.o.html, 1992.

Bettge, T., A. Craig, R. James, W. G. Strand, Jr., and V. Wayland. “Performance
of the PCM on the SGI Origin 2000 and the Cray T3E.” The 41st Cray User
Group Conference, Minneapolis, MN, May 1999.

Gustafson, J. L. “Reevaluating Amdahl’s Law.” Communications of the ACM,
vol. 31, no. 5, pp. 532–533, The Association for Computing Machinery, Inc.,
May 1988.

Mascagni, M. “Parallel Wiener Integral Methods for Elliptic Boundary Value
Problems: A Tale of Two Architectures.” http://sushi.st.usm.edu
/~mascagni/ftp/astfalk.ps, originally published in 1990 in SIAM News, vol.
23, no. 4, July 1990.

Oberlin, S. Keynote slides for ISCA’99. The 26th International Symposium on
Computer Architecture, http://www.neci.nj.nec.com/isca99/, 1999.

Simon, H. D., and L. Dagum. “Experience in Using SIMD and MIMD Parallelism
for Computational Fluid Dynamics.” http://www.nas.nasa.gov/NAS
/TechReports/RNRreports/ hsimon/RNR-91-014/RNR-91-O14.o.html, 1991.

Simon, H. D., W. R. Van Dalsem, and L. Dagum. “Parallel Computational Fluid
Dynamics: Current Status and Future Requirements.” http://www.nas.nasa
.gov/NAS/TechReports/ RNRreports/hsimon/RNR-92-004/ RNR-92-004. html,
1994.

Singh, K. P., B. Uthup, and L. Ravishanker. “Parallelization of Euler and N-S
Code on 32 Node Parallel Super Computer PACE+.” Presented at the
ADA/DRDO-DERA Workshop on CFD, 1998.

Wang, G., and D. K. Tafti. “Performance Enhancement on Microprocessors With
Hierarchical Memory Systems for Solving Large Sparse Linear Systems.” The
International Journal of Supercomputing Applications, February 1997.

 17

INTENTIONALLY LEFT BLANK.

 18

Glossary

AHPCRC Army High Performance Computing Research Center

CFD Computational fluid dynamics

MFLOPS Million floating point operations per second

MIMD Multiple instruction multiple data

MPI Message-passing interface

MPP Massively parallel processor

RISC Reduced instruction set computer

SIMD Single instruction multiple data

 19

INTENTIONALLY LEFT BLANK.

 20

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 1 DIRECTOR 2 DEFENSE TECHNICAL
 US ARMY RESEARCH LAB INFORMATION CENTER
 AMSRL D DTIC DDA
 D R SMITH 8725 JOHN J KINGMAN RD
 2800 POWDER MILL RD STE 0944
 ADELPHI MD 20783-1197 FT BELVOIR VA 22060-6218

 1 DIRECTOR 1 HQDA
 US ARMY RESEARCH LAB DAMO FDT
 AMSRL DD 400 ARMY PENTAGON
 2800 POWDER MILL RD WASHINGTON DC 20310-0460
 ADELPHI MD 20783-1197
 1 OSD
 1 DIRECTOR OUSD(A&T)/ODDDR&E(R)
 US ARMY RESEARCH LAB R J TREW
 AMSRL CI AI R THE PENTAGON
 (RECORDS MGMT) WASHINGTON DC 20301-7100
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145 1 DPTY CG FOR RDA
 US ARMY MATERIEL CMD
 3 DIRECTOR AMCRDA
 US ARMY RESEARCH LAB 5001 EISENHOWER AVE
 AMSRL CI LL ALEXANDRIA VA 22333-0001
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145 1 INST FOR ADVNCD TCHNLGY
 THE UNIV OF TEXAS
 1 DIRECTOR AT AUSTIN
 US ARMY RESEARCH LAB PO BOX 202797
 AMSRL CI AP AUSTIN TX 78720-2797
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197 1 DARPA
 B KASPAR
 3701 N FAIRFAX DR
 ABERDEEN PROVING GROUND ARLINGTON VA 22203-1714

 1 US MILITARY ACADEMY 4 DIR USARL
 MATH SCI CTR OF AMSRL CI LP (BLDG 305)
 EXCELLENCE
 MADN MATH
 MAJ HUBER
 THAYER HALL
 WEST POINT NY 10996-1786

 21

NO. OF
COPIES ORGANIZATION

ABERDEEN PROVING GROUND (CONT)

 AMSRL CI HA
 P CHUNG
 J CLARKE
 C ZOLTANI
 A MARK
 AMSRL CI HC
 D BROWN
 R PRABHAKARAN
 T PRESSLEY
 T KENDALL
 P MATTHEWS
 K SMITH
 AMSRL WT PB
 H EDGE
 J SAHU
 K HEAVEY
 P WEINACHT

 22

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 1 PROGRAM DIRECTOR 1 ARMY AEROFLIGHT
 C HENRY DYNAMICS DIRECTORATE
 1010 N GLEBE RD STE 510 R MEAKIN M S 258 1
 ARLINGTON VA 22201 MOFFETT FIELD CA 94035-1000

 1 DPTY PROGRAM DIRECTOR 1 NAVAL RSCH LAB
 L DAVIS HEAD OCEAN DYNAMICS
 1010 N. GLEBE RD STE 510 & PREDICTION BRANCH
 ARLINGTON VA 22201 J W MCCAFFREY JR CODE 7320
 STENNIS SPACE CENTER MS
 1 DISTRIBUTED CENTERS 39529
 PROJECT OFFICER
 V THOMAS 1 US AIR FORCE WRIGHT LAB
 1010 N GLEBE RD STE 510 WL FIM
 ARLINGTON VA 22201 J J S SHANG
 2645 FIFTH ST STE 6
 1 HPC CTRS PROJECT MNGR WPAFB OH 45433-7912
 J BAIRD
 1010 N GLEBE RD STE 510 1 US AIR FORCE PHILIPS LAB
 ARLINGTON VA 22201 OLAC PL RKFE
 CAPT S G WIERSCHKE
 1 CHSSI PROJECT MNGR 10 E SATURN BLVD
 L PERKINS EDWARDS AFB CA 93524-7680
 1010 N GLEBE RD STE 510
 ARLINGTON VA 22201 1 NAVAL RSCH LAB
 DR D PAPACONSTANTOPOULOS
 1 RICE UNIVERSITY CODE 6390
 MECHANICAL ENGRNG & WASHINGTON DC 20375-5000
 MATERIALS SCIENCE
 M BEHR MS 321 1 AIR FORCE RSCH LAB DEHE
 6100 MAIN ST R PETERKIN
 HOUSTON TX 77005 3550 ABERDEEN AVE SE
 KIRTLAND AFB NM 87117-5776
 1 J OSBURN CODE 5594
 4555 OVERLOOK RD 1 NAVAL RSCH LAB
 BLDG A49 RM 15 RSCH OCEANOGRAPHER CNMOC
 WASHINGTON DC 20375-5340 G HEBURN
 BLDG 1020 RM 178
 1 NAVAL RSCH LAB STENNIS SPACE CENTER MS
 J BORIS CODE 6400 39529
 4555 OVERLOOK AVE SW
 WASHINGTON DC 20375-5344 1 AIR FORCE RSCH LAB
 INFORMATION DIRECTORATE
 1 WL FIMC R W LINDERMAN
 B STRANG 26 ELECTRONIC PKWY
 BLDG 450 ROME NY 13441-4514
 2645 FIFTH ST STE 7
 WPAFB OH 45433-7913 1 SPAWARSYSCEN D4402
 R A WASILAUSKY
 1 NAVAL RSCH LAB BLDG 33 RM 0071A
 R RAMAMURTI CODE 6410 53560 HULL ST
 WASHINGTON DC 20375-5344 SAN DIEGO CA 92152-5001

 23

NO. OF
COPIES ORGANIZATION

 1 USAE WATERWAYS 1 UNIVERSITY OF TENNESSEE
 EXPERIMENT STATION COMPUTER SCIENCE DEPT
 CEWES HV C S MOORE
 J P HOLLAND 1122 VOLUNTEER BLVD
 3909 HALLS FERRY RD STE 203
 VICKSBURG MS 39180-6199 KNOXVILLE TN 37996-3450

 1 US ARMY CECOM RSCH

ABERDEEN PROVING GROUND DEVELOPMENT & ENGRNG CTR
 AMSEL RD C2
 30 DIR USARL B S PERLMAN
 AMSRL CI FT MONMOUTH NJ 07703
 N RADHAKRISHNAN
 AMSRL CI H 1 SPACE & NAVAL WARFARE
 C NIETUBICZ SYSTEMS CTR
 AMSRL CI HA K BROMLEY CODE D7305
 D PRESSEL BLDG 606 RM 325
 D HISLEY 53140 SYSTEMS ST
 R NAMBURU SAN DIEGO CA 92152-5001
 R VALISETTY
 D SHIRES 1 DIRECTOR
 R MOHAN DEPARTMENT OF ASTRONOMY
 M HURLEY P WOODWARD
 P CHUNG 356 PHYSICS BLDG
 J CLARKE 116 CHURCH ST SE
 C ZOLTANI MINNEAPOLIS MN 55455
 A MARK
 AMSRL CI HC 1 RICE UNIVERSITY
 D BROWN MECHANICAL ENGRNG &
 R PRABHAKARAN MATERIALS SCIENCE
 T PRESSLEY T TEZDUYAR MS 321
 T KENDALL 6100 MAIN ST
 P MATTHEWS HOUSTON TX 77005
 K SMITH
 AMSRL WT PB 1 ARMY HIGH PERFORMANCE
 J SAHU COMPUTING RSCH CTR
 K HEAVEY B BRYAN
 P WEINACHT 1200 WASHINGTON AVE
 AMSRL WM TC S MINNEAPOLIS MN 55415
 S SCHRAML
 K KIMSEY 1 ARMY HIGH PERFORMANCE
 S SCHETTLER COMPUTING RSCH CTR
 R COATES G V CANDLER
 AMSRL WM T 1200 WASHINGTON AVE
 B BURNS S MINNEAPOLIS MN 55415
 AMSRL WM TA
 D KLEPONIS 1 NAVAL CMD CNTRL &
 M NORMANDIA OCEAN SURVEILLANCE CTR
 AMSRL WM BF L PARNELL
 H EDGE NCCOSC RDTE DIV D3603
 49590 LASSING RD
 SAN DIEGO CA 92152-6148

 24

 25

 26

INTENTIONALLY LEFT BLANK.

	Acknowledgments(
	Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Performance
	3. Ideal Speedup
	4. Hard Scalability
	5. Soft Scalability
	6. Throughput
	7. Serial Efficiency
	8. Conclusions
	9.References
	Glossary

